
Curriculum Guide

Mission Pack:
Lift-Off with CodeX

Lift-Off with CodeX .

Table of Contents

Lift-Off with CodeX Overview 2

Peripherals Kit Overview 3

Project 1: Welcome to Lift-Off with CodeX 4

Project 2: Lift-Off 6

Project 3: Conserve Energy 8

Project 4: Hatch Lock 11

Project 5: Alert System 13

Project 6: Life Support 16

Project 7: Solar Tracking 19

Project 8: Prepare the Lander 21

Project 9: Automatic Gardner 23

Project 10: Exploring the Surface 25

Appendix A: Required Resources 28

Appendix B: Our Approach 29

Appendix C: Teacher Resources 30

Appendix D: Vocabulary by Mission 32

Appendix E: Python Code by Mission 34

–1–

Lift-Off with CodeX .

Lift-Off with CodeX Overview
This mission pack expands Python coding knowledge gained during the Python
with CodeX Mission Pack. During this mission pack, students will complete
outer-space themed projects in your mission to Lift-Off with code. Adding
peripherals to the CodeX allows students to interact with the world in new and
exciting ways.

Pre-Mission Assignment
Students may benefit from reviewing the foundations of computational thinking. Discuss
algorithms, variables and constants, functions, loops and conditional statements. Go over
debugging strategies. Review basics of Python coding, like indenting, use of capitalization,
importing libraries, etc.

Mission 1: Welcome to Lift-Off with CodeX
Students will receive the Mission Briefing about their trip to outer space. They explore the
different peripherals in their kit, and connect their first peripheral - the red LED light.

Mission 2: Lift-Off!
Students will get the rocket ship off the ground by setting up a power switch, launch button, and
countdown sequence.

Mission 3: Conserve Energy
Students will conserve energy on the ship by using motion detection to control when lights come
on and how bright they are.

Mission 4: Hatch Lock
Students will use the NeoPixel ring and microswitch to make sure the shuttle’s hatch locks are
sealed.

Mission 5: Alert System
Students will use the temperature and sound sensors to design an alarm system that will let the
crew know if something has gone wrong with the ship.

Mission 6: Life Support
Students will create proper air circulation on the ship by using a 360 Servo to rotate the fans.

Mission 7: Solar Tracking
Students will rotate solar panels to harness enough of the sun’s energy to power the ship to
Mars.

Mission 8: Prepare Lander
Students will use the object sensor to land safely on the surface of Mars.

Mission 9: Automatic Garden
Students will build a system to sense soil moisture and automatically water a garden.

Mission 10: Exploring the Surface
Students fire up the Martian Rover to explore the surface, watching out for large boulders that
could damage the Rover.

–2–

Lift-Off with CodeX .

Peripherals Kit Overview

Peripheral Description Missions Peripheral Description Missions

Button
A standard momentary push
button, used in applications
for input.

2 Motion Sensor
A PIR sensor, used for
motion lights and alarms.

3

Switch
Locks into place when
pressed; generally used to
apply power or change a
setting.

2, 6 Object Sensor
It contains an LED that
emits IR light and a
phototransistor that detects
IR light from nearby objects.

8

Red (and White) LED
Light emitting diode.
Outputs red (or white) light.

1, 2, 3, 5,
7

8 RGB LED Ring
Also called a NeoPixel ring.
Pixels can be illuminated in
any color individually.

4, 8

Microswitch
A simple form of a button;
can be used as a crash
sensor or to detect touch.

4, 8 360 (Continuous) Servo
This servo rotates 360
degrees and can operate
continuously.

6

Potentiometer
Often referred to as a knob;
can be physically turned for
variable input.

3, 5

+

180 (Positional) Servo
This servo rotates forward
or backward 180 degrees
and can hold its position.

7, 8

Temperature Sensor
Can read raw values of a
temperature.

5 3V Relay
Can be used to switch
larger power and voltages
to devices.

9

Sound Sensor
Is sensitive to sound
intensity; can be used to
detect noises.

5 Soil Moisture Sensor
Detects the amount of
moisture present in the soil
surrounding it.

9

Light Sensor
The photocell measures
ambient light; used for solar
monitoring & light dimming.

7 Water Pump
A small water pump
designed for submersible
operations.

9

Divider
A circuit that cuts the
voltage from analog
sensors in half so you can
get the full range of the
sensor.

3, 5, 7, 9 Mission 10 External Peripherals
● Mini Breadboard
● Red and Amber LED
● 2 100-Ohm Resistors
● HC-SR04 Ultrasonic

Distance Sensor
● 10 Jumper Wires

–3–

Lift-Off with CodeX .

Mission 1: Welcome to Lift-Off with CodeX

Overview and Notes: Your Mission: Should you choose to accept it...

We’re going to outer space! This first project is all about getting to know the peripherals hardware.
Before your students finish, they will connect the red LED peripheral to the CodeX and write some
code to turn it on.

You may need to show them how to properly connect a peripheral to the CodeX. Each peripheral
has a small cable for connecting. At one end of the cable is a latching connector, which fits into a
mating receptacle on the sensor. The other end of the cable has a non-latching connector which
connects to the CodeX. Both the sensor and the CodeX have “G” and “S” labeled to help you
know the direction of the cable.

For the latching connection to each sensor, feel free to leave the cable attached after first use.
Should you need to disconnect the latching connector from the sensor, there is a small lever that
can be depressed with your thumb or a small screwdriver. For some connectors a slight downward
flexing of the connector (in the direction you’re pushing the lever) will help it clear the catch.

Remind students to be careful when using the peripherals, that they don’t pull on the wires to
disconnect, but rather grasp the connector housing when doing so.

Preparation and Materials:
● Create a class on the teacher dashboard.
● Students need a computer / laptop with the Chrome web browser.
● Make sure the students can successfully login to http://make.firialabs.com, create a student

account and join the class with the code.
● Each student (or pair) needs a CodeX, peripherals kit and cables (red LED).

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-03
● 2-AP-11
● 2-AP-14
● 2-AP-19
● 2-IC-20

● 3A-CS-01
● 3A-CS-02
● 3A-IC-24

● 3B-CS-02
● 3B-AP-14
● 3B-AP-16
● 3B-IC-27

–4–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 1:Welcome to Lift-Off with CodeX Time Frame: 30 - 60 minutes

Learning Targets
● I can safely connect and disconnect the red

LED peripheral to my CodeX.
● I can use the peripheral value property to

control the peripheral.

Key Concepts
● Cable colors matter – they must match.

○ Black is GROUND
○ Red is VCC Power
○ Yellow is SIGNAL

● One cable end has a latch and is connected to
the peripheral.

Assessment Opportunities
● Check for Understanding in CodeSpace
● Match peripheral to name/description
● Exit ticket with cable colors
● Submit and/or check the PeriphIntro program
● Journal entry on their learning experience

Success Criteria
Identify the peripherals in the Lift-Off kit.
Successfully connect and disconnect the red
LED to the CodeX.
Write a program that successfully turns on and
off the red LED.

Vocabulary
● Peripheral: A device that interacts with the CPU (common peripherals are LED lights, display screen,

buttons, mouse, keyboard, and printer)
● Function: A named chunk of code you can run anytime just by calling its name; also called a procedure
● Parameter: A local variable in a function that receives a value passed into the function when it is called;

information the function needs to complete its task
● Argument: Passing data to functions (information a function uses to complete its task)
● Variable: A name you assign to some data used in code instead of the literal, or actual, values
● Constant: A name for a value that doesn’t change during program execution

New Python Code

exp.digital_out(exp.PORT0) Used to set up a digital output peripheral (LED)

led.value The property of the LED peripheral used to turn on/off the light

Real World Applications
● Discuss the fact that all electronic devices have circuit boards inside.
● Challenge students to name a few peripherals they use every day, similar to the ones in the kit.
● Encourage students to give examples of how their lives are impacted by technology. See examples below:

○ Bluetooth speaker, headphones
○ VR headsets, webcams, etc.
○ Medical equipment
○ Technology in transportation or entertainment

Extensions
● Light up the CodeX pixel 0 to indicate where

the peripheral is connected.
● Use the A and B buttons of the CodeX to turn

on/off the red LED.
● Set up and write code for the white LED. Use

the CodeX buttons to control the red and white
LEDs.

Cross-Curricular
● LANGUAGE ARTS: Students write a first-person

essay about the impact of technology.
● SCIENCE: Students select one peripheral and

research how it works or its uses in a science
field.

● MATH: Many peripherals are digital and only
use the values True or False. Review binary
numbers.

–5–

Lift-Off with CodeX .

Mission 2: Lift-Off

Overview and Notes: Let’s go to Mars!

This mission is all about getting the rocket ship off the ground. Students will create a power switch
for the engines, a countdown sequence for personnel and a launch button for Mission Control.
Ideally students will refresh their Python knowledge as they get the mission to Mars underway.

You will want to remind students to be gentle as they connect and disconnect the peripherals from
the CodeX. You can work with students in small groups as they practice.

This project gives students plenty of opportunities to engage in the computational thinking skill of
abstraction. Encourage students to carefully read about abstraction in Objective 5 and continue to
remind them that when they are creating functions, they are practicing abstraction. The concept of
algorithms is also in this mission and throughout the mission pack. Review and practice algorithms
with your students and encourage them to see algorithms in their daily lives.

Helpful Reminders:

● Always start a new program by creating a new file and naming it appropriately.
● Students are making a project, not just working on random problems. Have them focus on

the project-based objectives and avoid rushing through the material too quickly.
● Students should collect all the Tools they find in the instructions so they can reference them

later when they need additional help.
● Encourage documentation and testing strategies.
● Read carefully and check the hints. Usually the answer is there right in front of them!
● Students can test their understanding along the way by trying stuff! Have them “color

outside the lines.”

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● To login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (red LED, white LED, switch, button)

Peripherals Used

Red & white LEDs
Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14

● 3A-CS-02
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18

● 3B-CS-02
● 3B-AP-10
● 3B-AP-14
● 3B-AP-16

–6–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 2: Lift-Off Time Frame: 45-75 minutes

Learning Targets
● I can describe the difference between a button

and a switch.
● I can read the value of a button and switch.
● I can use an infinite loop to continuously check

the values of the button and switch.
● I can use a button and switch to control an LED.
● I can break out of a loop.
● I can display a countdown sequence.

Key Concepts
● Understand the difference between a button

and a switch. The switch locks in place while
the button does not.

● The project uses two input peripherals: button
and switch. Each controls a different aspect of
the lift-off project.

● Use three branches in the infinite loop. One
branch will have two conditions.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2)
● Practice evaluating conditional statements
● Exit ticket - construct a conditional statement
● Submit and/or check the LiftOff program
● Journal entry on their learning experience

Success Criteria
Use a switch to turn on/off the red LED.
Use a button to launch a countdown sequence.
Show a countdown sequence on the CodeX
display that includes a flashing white LED.

Vocabulary
● Abstraction: the process of taking away or removing characteristics from something in order to reduce it

to a set of essential characteristics
● Algorithm: a sequence of steps for completing a task (step by step process)
● Branching: Decision points in code; a condition

New Python Code

exp.digital_in(exp.PORT0) Used to set up a digital input peripheral (button, switch)

button.value Returns the button’s position: True (not pressed) or False (pressed)

switch.value Returns the switch’s position: True (out) or False (in)

display.fill() Fills the CodeX LCD screen with a pre-defined or RGB color

Real World Applications
● Anything that has a lever, button or switch is a real world example. Have students come up with their own

examples. Some items are listed below:
○ Elevator buttons and doorbells, keyless entry on an automobile, “start Engine” on an automobile

● The mission will use a function. Discuss abstraction and how it hides details of embedded technology.
● The mission uses an algorithm. Have students develop their own algorithms for:

○ Daily tasks, other computer programs, how they think an electronic device may work, etc.

Extensions
● Display images of a rocket ship taking off

during the lift_off phase.
● Add the CodeX pixels as flashing lights during

the countdown phase. Use random colors.
● Each astronaut may need to indicate they are

ready for lift-off. Use the CodeX buttons as
inputs for the astronauts to push in sequence
to indicate they are ready.

Cross-Curricular
● LANGUAGE ARTS: Have students write about a

time they prepared to leave for somewhere. Or
discuss the theme of transitioning with a
current book assignment.

● SCIENCE: Discuss gravity or Newton’s Laws
and how they relate to the mission to Mars.
–OR– include a lesson on space.

● MATH: Create a chart of the distance traveled
by the ship. –OR– Draw a rocket ship trajectory
and then find the equation of the line.

–7–

Lift-Off with CodeX .

Mission 3: Conserve Energy

Overview and Notes: It’s a long way to Mars. Maybe we should plan…

Mars is a hike! In this lesson, students work with three different peripherals to detect motion,
simulate a light source, and control the activation/brightness of the lights after motion has been
detected.

One of the more challenging concepts for this project is the combined use of digital and analog
sensors. It might be helpful to have students discuss the difference between the two types of
devices and review the data they return.

As a cross-curricular tie-in, and as a hook, you could have students talk about a road trip and how
they would plan. They can use a map as a geography lesson, calculate distance using the scale of
a map, and work on a plan for how much money they will need, how often they will stop, gas
mileage, etc. Then have them find the distance to Mars. Have them consider how their plans might
change if they knew they were going that far, and how long it will take. If they don’t organically
bring up conserving energy, pose a question that requires them to consider that particular
resource.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● To login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (white LED, potentiometer, motion sensor, divider)
● A light source, like a flashlight

Peripherals Used

White LED

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-19

● 3A-CS-02
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16

–8–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 3: Conserve Energy Time Frame: 45-75 minutes

Learning Targets
● I can use the potentiometer to control the level

of brightness on an LED.
● I can use the motion sensor to detect

movement.
● I can use a timer to keep the LED on after

motion has been detected.

Key Concepts
● Understand the difference between reading

analog (potentiometer) and digital (motion
sensor) input.

● The LED is first set up as a digital input
peripheral, but is changed to analog using
PWM–pulse-width modulation.

● PWM requires a duty cycle and frequency.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2)
● Identify digital and analog inputs around them
● Exit ticket - explain PWM
● Submit / check the ConserveEnergy program
● Journal entry on their learning experience

Success Criteria
Control the brightness of an LED with the
potentiometer.
Keep the LED on when motion is detected
using a timing technique.

Vocabulary
● Analog: A peripheral with a range of integer values – from 0 (off) to 2^16 - 1 (full power)
● Digital: A binary peripheral with two states – True or False
● ADC: Analog to digital converter – converts an analog measurement to a finite digital value. For CodeX,

which is a 16-bit microcontroller, the digital values range from 0 to 2^16-1 (65,535)
● Pulse-Width Modulation: Analog measurement where on/off pulses are sent at a constant rate,

determined by the duty cycle and frequency (or analog period)

New Python Code

exp.pwm_out(exp.PORT0) Used to set up a peripheral with PWM; requires a duty cycle and frequency

exp.analog_in(exp.PORT1) Used to set up an analog input peripheral (potentiometer)

led.duty_cycle Determines power to the LED (higher integer is a brighter light)

sleep_ms() Delays program execution in milliseconds

time.ticks() Returns the current clock time (elapsed time since last reboot)

motion_sensor.value Returns the motion sensor value: True (detected) or False (not detected)

potentiometer.value Returns an integer as the potentiometer knob’s position

Real World Applications
Motion sensors and built-in timers are used in a variety of ways.

● Lights that come on automatically or shut off automatically. For example, when you go to the grocery store
the light comes on when you walk by the refrigerator case.

● Have students discuss other applications of automatic technology, like air conditioning, etc.
The need for conserving energy is real.

● Lead a discussion or lesson on energy conservation. What are different energy sources? What are the
pros and cons of each? Which ones might work in outer space?

–9–

Lift-Off with CodeX .

Extensions
● Use the CodeX to add an indicator in

energy-saving mode and energy-wasting
mode. Example: sound, pixels, display, etc.

● The CodeX also has a built-in light sensor. Use
another motion detector to control the other
sensor.

Cross-Curricular
Many suggestions for a cross-curricular project are
included on the previous page. They include ideas for:

● LANGUAGE ARTS, MATH, GEOGRAPHY
Additional SCIENCE ideas:

● Distance, rate & time
● Conserving energy
● Artificial vs natural light
● Volts and how the divider works

–10–

Lift-Off with CodeX .

Mission 4: Hatch Lock

Overview and Notes: Is it drafty in here?

Now that the crew has a way to conserve energy on the way to Mars, they need to make sure they
can successfully dock with a supporting craft that was launched ahead of the mission.

With 8 locks that need to be successfully engaged, this project supports mathematical
conversations about failure rates along with the percentages and statistics related to them.

Since the locks only work 85% of the time, students will be generating a random number between
one and one hundred to mimic what happens in real life. If students are not familiar with
percentages or struggle with interpreting data, you might need to have a conversation about how
the code for checking the value of the random number models whether or not a hatch is locked.

Helpful reminders:

● Colorblind students might struggle if they inadvertently focus on certain color
combinations. The mission can be modified so they use color combinations that work for
them.

● The NeoPixel ring can be plugged directly into the CodeX without an additional cable.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● To login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (NeoPixel ring, microswitch, optional switch)

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-16
● 2-AP-19

● 3A-CS-03
● 3A-DA-09
● 3A-AP-13
● 3A-AP-14
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-AP-10
● 3B-AP-12
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-17

–11–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 4: Hatch Lock Time Frame: 45-75 minutes

Learning Targets
● I can connect the NeoPixel ring to the Codex.
● I can adjust the brightness and colors of the

pixels on the NeoPixel ring.
● I can use random values to change the colors

of the LEDs on the NeoPixel ring.
● I can return a random failure rate of 15%.

Key Concepts
● The NeoPixel colors are set using tuples - a

sequence of values similar to a Python list.
● Variables can be used to give your code

memory, like if a button is pressed.
● A True/False failure rate can be calculated by

generating a random number and comparing it
to a selected range.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2)
● Have students develop the calculations for

different failure or success rates
● Exit ticket - Show code to generate a random

number in a specific range
● Submit / check the HatchLock program
● Journal entry on their learning experience

Success Criteria
Use the microswitch to control the NeoPixels.
Use a loop to set the colors or the NeoPixels.
Use a random number generator to simulate
the probability of hatch lock failure.

Vocabulary
● RGB: Red, Green, Blue; the colors that make up a single pixel on the screen
● Pixel: Picture element; tiny dots used to compose images and text on a digital screen
● Tuple: An immutable sequence of items that you can access with an index, or a list with values that don’t

change. A read-only version of a list.
● Index: a common method for referencing the elements in a list, tuple or string using a number

New Python Code

neopixel.NeoPixel(exp.PORT0, 8) Sets up the NeoPixel ring; indicates the port and number of LEDs

power.enable_periph_vcc(True) Turns on extra power to the NeoPixel ring

randint(low, high) Returns a random integer between and including low and high

(red, green, blue) A tuple with three items; used for RGB colors

np[pixel] Accessing a single item [pixel] in a list np

return Returns a value to the statement calling the function

Real World Applications
RGB pixels are used in many digital items

● Video games, digital displays that light up as you complete a task
● NeoPixels can be used in traffic signals, stadium billboards, concert lighting, etc.

Extensions
● Include the disco ball with the hatch lock

project.
● Use buttons on the CodeX to control the disco

ball speed (speed up, slow down).
● Add a signal when all 8 hatch locks are

successful (sound, image, CodeX pixels, etc.).

Cross-Curricular
● LANGUAGE ARTS: Have students write about a

personal experience where something failed.
● SCIENCE: Discuss RGB in the context of light.

Have a lesson on the science of pixels.
● MATH: Explore rates (like failure rates) and

construct the algorithm for calculating them.

–12–

Lift-Off with CodeX .

Mission 5: Alert System

Overview and Notes: Did you hear something?

Being on another planet can get lonely sometimes. With no neighbors to check on the crew, they’ll
need a good alarm system. In this project students will consider the technical dangers a crew can
encounter on the ship. It might be helpful to have students think about how different types of
sensors might be used to track the temperature or detect an explosion.

The complexity of this project might be challenging for students – so schedule several checkpoints
as students are working. Some functions have very similar names which can make it difficult to find
errors. Students are asked to convert raw analog data from a sensor into degrees Celsius.

The exponential moving averages calculation is also introduced, which is heavily dependent on
statistics. If it makes sense for your students, show a graph of an exponential function and talk
about how the relationship between two quantities is not linear. You could also discuss moving
averages related to fast-moving stock trading markets and give a bit of context to the idea of
statistics. And yes, this would be a great time to collaborate with a math teacher!

Helpful reminders:

● Depending on the temperature of a student’s hand, the sensor might not increase very
much. After testing with students you may need to adjust to the proper threshold. Or use
something to cool down the temperature sensor before squeezing between fingers.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (red LED, potentiometer, temperature sensor, sound

sensor and divider)
● Optional: something to cool and / or warm the temperature sensor

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-DA-07
● 2-DA-08
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-19

● 3A-CS-02
● 3A-CS-03
● 3A-DA-09
● 3A-DA-12
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-DA-07
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-17

–13–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 5: Alert System Time Frame: 60-90 minutes

Learning Targets
● I can read data from a sensor and display it on

the Console Panel.
● I can convert a raw analog temperature reading

to Celsius.
● I can read an analog value from a sound

sensor.
● I can calculate the average sound in the room.

Key Concepts
● Raw sensor data must often be converted into

a different form before it can be used.
● Sensor behavior can be controlled by setting

the analog period.
● A threshold can be used with sensor readings

to determine when something is out of normal
range.

● Real-world situations can be explored through
simulations.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2)
● Display temperature readings on the Console

Panel. Compare readings with different CodeX.
● Display sound sensor readings on the Console

Panel. Compare readings with different CodeX.
● Exit ticket - Explain the difference between how

a temperature sensor and sound sensor work
● Submit / check the AlertSystem program
● Journal entry on their learning experience

Success Criteria
Read data from a sensor and display it on the
Console Panel.
Convert raw data from the temperature sensor
to degrees Celsius.
Use data from the sound sensor to calculate an
average sound value.
Control an alarm system with data from
sensors.

Vocabulary
● Duty Cycle: The percentage of time power is ON during pulse-width modulation
● Frequency: The analog period, or how rapidly the device pulses during pulse-width modulation
● REPL: “Read, evaluate, print loop” command line that enables print statement output
● Simulation: Code that builds a model of something, and lets you play with that model to explore "virtual"

situations
● Threshold: A specific limit or point that must be met or exceeded in order for something to occur

New Python Code

LED_ON = 2**16 // 2 Maximum duty-cycle for an LED using PWM

LED_OFF = 0 Minimum duty_cycle for an LED using PWM

exp.pwm_out(exp.PORT0, frequency=2) LED using PWM for blinking light

degrees_c = raw_temp*0.004577 - 50 Conversion of raw temp to degrees Celsius

avg_sound = avg*(1-WEIGHT) +
new_val*WEIGHT

Average sound calculation using exponential moving average

import soundlib Import the sound library to add non-blocking sound functions

siren =
soundmaker.get_tone(“violin”)

Sets up a variable for the sound

siren.set_pitch() Sets the pitch tone at the given frequency

siren.play() Plays the sound at the set pitch

–14–

Lift-Off with CodeX .

siren.glide() A non-blocking way to ramp the pitch from the current setting
to a new setting over a specified amount of time

siren.stop() Stops playing the tone

global temp_limit Allows for updating a global while being used in a function.

print(“Temp:”, degree_c) The print() function displays text on the console panel

Real World Applications
Digital and analog sensors are used in a variety of ways:

● Home surveillance detectors and alarm systems
● Refrigeration and cooling in the food industry
● Sensors in cars to detect problems (low tire indicator, overheating, etc.)

Have students discuss how sensors are used in their lives to help people.

Extensions
● Change the raw temperature to Fahrenheit.
● Use buttons on the CodeX to use either Celsius

or Fahrenheit temperatures.
● Find images that go with the different alerts

and display them on the CodeX screen when
the alarm is triggered.

● Like a traffic light, add a “warning” period
before the alarm is triggered, that alerts the
crew to a potential danger before the actual
threshold is reached.

● Check for the sound reading two different
ways. Below threshold could mean power
failure and no electronics are working. Above
threshold could mean an explosion. Give a
different warning for each situation.

Cross-Curricular
● LANGUAGE ARTS: Have students write a poem

about a topic from the lesson, or about their
coding experience.

● SCIENCE: Explore sound waves and sound in
space.

● MATH: Many applications from this lesson
○ Make a chart of the sensor readings

(temperature and sound).
○ Practice converting temperatures –

Fahrenheit to Celsius, Celsius to
Fahrenheit.

○ Review the calculations for changing
volts to celsius. Graph some sample
data and then write the equation.

○ The lesson uses EMA for the sound
average. Compare and contrast other
ways to find a weighted average.

● ART: Students can draw (or use mixed-media)
the interior of their own spacecraft. Discuss the
use of color and/or perspective in their artwork.

–15–

Lift-Off with CodeX .

Mission 6: Life Support

Overview and Notes: Astronauts need air too!

It doesn’t matter how safe the crew is if they can’t breathe. Ensuring consistent air quality is key to the
success of this mission. Students will be using a servo to make sure the air circulates throughout the
spacecraft. This project is a fantastic opportunity to integrate life sciences with computer science. Students
can discuss the impact of poor air quality on human health.

You may need to discuss the duty cycles of the servo to help
students understand the servo’s analog control signals. You can use
this duty cycles table as a guide.

You can learn more about servos and duty cycles at: PCB Cadence

Helpful reminders:

● The wires are slightly different on the servo. Brown corresponds to black; while orange
corresponds to yellow.

● Students only need one of the plastic pieces included with the servo. You may want to
remove the others as well as the screws before distributing the peripherals to students.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (360 servo, one servo horn, switch)

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-DA-07
● 2-DA-08
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-17
● 2-AP-19

● 3A-CS-01
● 3A-CS-03
● 3A-DA-11
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-DA-07
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–16–

https://resources.pcb.cadence.com/blog/2020-pulse-width-modulation-characteristics-and-the-effects-of-frequency-and-duty-cycle
http://make.firialabs.com

Lift-Off with CodeX .

Mission 6: Life Support Time Frame: 30-60 minutes

Learning Targets
● I can set the analog period on the 360 servo.
● I can make the servo spin clockwise and

counter-clockwise.
● I can start and stop the servo using a switch.

Key Concepts
● The duty cycle determines the speed and

direction of the 360 servo.
● The program can use “states” or phases to

determine what happens.
● Use nested if statements to transition from one

state to the next.

Assessment Opportunities
● Check for Understanding in CodeSpace
● Make a chart of percent, speed and direction of

a servo, based on observation using code.
● Exit ticket - Draw a diagram of the finite-state

machine for this mission.
● Submit / check the LifeSupport program
● Journal entry on their learning experience

Success Criteria
Connect a servo with servo horn to the CodeX.
Use a function call to control the servo’s speed
and direction.
Control the servo with a switch.

Vocabulary
● Servo: A DC motor with a controller circuit, internal feedback mechanism and gearbox. The 360

continuous servo goes in both directions at different speeds. The 180 positional servo turns in either
direction to a specific angle and holds that position.

● Finite-State Machine: The status of a system with transitions. With this system, your program can only be
in one of a known set of “states” at any given time. Usually “state” is based on variables in your code.

● State: A phase of a program. Keeping track of states helps you understand and manage your code. Each
state might have its own set of conditions it is tracking.

● Transition: Moving between states; the program transitions from one state to another when certain
conditions are met.

New Python Code

servo = exp.pwm_out(exp.PORT0,
frequency=20)

Set up a 360 servo using PWM with a frequency of 20

// example: CYCLE * percent//100 Division that returns only the integer (no decimal, no rounding)

Nested if statements. The first if statement is checked. If true,
it will check the second if statement. If false, the block of code
is skipped.
This example also shows transitioning to a different state.

Real World Applications
Servos can be used in a variety of applications:

● Motors on rover wheels for terrain exploration.
● The life support fans in a hospital.
● Hydraulic pump operation.
● Controlling the cabin pressure on an airplane.

Have students discuss where and how servos might be used in their lives.

–17–

Lift-Off with CodeX .

Extensions
The mission ends with a working life support system,
but you can make it more sophisticated. Some extra
features you can add to the system are:

● Have multiple speeds for the fan and cycle
through the speeds, like a ceiling fan.

● Add a temperature sensor and increase the
speed of the fan when it is warm.

● Use the computer’s clock and set a timer for
the fan to stay on.

● Use the motion detector to turn on the fan.
● Use the potentiometer to make the fan turn at

variable speed and direction.
● Use the CodeX NeoPixels or display screen to

show additional information.
A more advanced challenge:

● Use the accelerometer to simulate the effects
of movement on the air circulation system. Tilt
the CodeX to represent changes in the
spaceship’s orientation, which could affect
airflow and require adjustments.

Cross-Curricular
● LANGUAGE ARTS: Have students read a

technical report on servos, and then summarize
the information in a paragraph, or share
verbally with each other.

● SCIENCE: How much air does a person or
animal need? Have a lesson about oxygen
levels and survival.

● SCIENCE: How much power will the fan need
to operate? How can the ship power the fan?
Have a lesson about energy and conservation.

● MATH: Using the program code, have students
experiment with different percent values and
chart the speed and direction for each data
point. For more advanced math, plot the data
points and write the equation for the servo.

–18–

Lift-Off with CodeX .

Mission 7: Solar Tracking

Overview and Notes: Everybody loves the sunshine!

Throughout the Lift Off curriculum, students are asked to write code that helps the crew monitor and conserve
different types of resources. This project is no different. For the Solar Tracking project the crew needs a way to
generate energy from the sun. Learners will use a light sensor to determine when to “rotate” the solar panels to
follow the path of the sun.

Like the Life Support project, there is a natural link between life sciences
and computer science. Have students consider the impact of technology on
ideas around clean energy as well as fossil fuels. There are cross curricular
ties to mathematics. Students use percentages to solve the problems. You
may also want to point out that the duty cycles for this servo’s analog
control signals are different (see the table to the left).

Helpful reminders:

● The wires are slightly different on the servo. Brown corresponds to black; while orange
corresponds to yellow.

● Students only need one of the plastic pieces included with the servo.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (180 servo, one servo horn, light sensor, white LED,

divider)

Peripherals Used

white LED
Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-DA-08
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-16
● 2-AP-17
● 2-AP-19

● 3A-CS-03
● 3A-DA-11
● 3A-DA-12
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-DA-07
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-17
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–19–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 7: Solar Tracking Time Frame: 60-90 minutes

Learning Targets
● I can set the analog period on the 180 servo.
● I can change the position of the 180 servo.
● I can read data from the light sensor.
● I can use states and a state variable to control

the position of the 180 servo.

Key Concepts
● There is no “off” position for the 180 servo.
● A variable representing the state allows the

program to remember information about
events.

● The console panel can be used to monitor
analog data.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2)
● Make a chart of percent, angle and direction of

a servo, based on observation using code.
● Exit ticket - Explain “bouncing” and how it

affects digital input readings.
● Submit / check the SolarTracking program
● Journal entry on their learning experience

Success Criteria
Connect a servo with servo horn to the CodeX.
Use a function call to control the servo’s
position.
Read and display data from the light sensor.
Use a variable for states to control the position
of the 180 servo.

Vocabulary
● Photoresistor: A sensor that changes its resistance when light shines on it. A high intensity of light causes

less resistance, and less light causes more resistance.
● Bouncing:When a digital input registers multiple times instead of once, like a button press.

New Python Code

servo.duty_cycle = 0 Stop a 180 servo

state = ‘morning’ Define and initialize a variable for the state. Also, single
quotes can be used for strings (see hint in Objective 4).

Real World Applications
Positional servos can be used in a variety of applications:

● Solar fields or solar powered devices
● Controlling robotic arms
● Positional devices, such as satellites, antennae, etc.

Have students discuss where and how positional servos might be used in their lives.

Extensions
● Use the LED with PWM and the potentiometer

readings to change the light from dim to bright
● Use a timer or switch to turn on/off the LED
● Use a servo to spin the LED around the light

sensor
● Add a temperature sensor and rotate the

panels when the temperature is past a certain
threshold value (too hot or too cold)

● Use the CodeX display screen to show
additional information.

● Light up CodeX pixels to indicate the position
of the panels.

● Use CodeX buttons to manually control the
servo position.

Cross-Curricular
● LANGUAGE ARTS: Have students write a

summary of their project, using technical terms.
● SCIENCE: Have a lesson on solar power.
● SCIENCE:What does a “day” look like in

space? Have a lesson about light in space.
● MATH: Have a lesson about percents.
● MATH: Have a lesson about angles.

–20–

Lift-Off with CodeX .

Mission 8: Prepare Lander

Overview and Notes: Another small step for mankind…

Getting safely to Mar is the easy part. Landing safely, now that’s where the fun starts. A complete ground sensing
system will be constructed using several peripherals. The Object Sensor will be used to detect the nearing surface
of Mars. The NeoPixel will again be used to alert the astronauts of their impending landing. The Microswitch will be
used to indicate surface contact and lastly, the 180 Servo will be used to extend and retract the landing gear. The
concept of phases/states will be again used in the program.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (NeoPixel ring, object sensor, microswitch, 180 servo,

one servo horn)
● A small Phillips screwdriver to adjust the object sensor
● A small ruler (with millimeters) for adjusting the object sensor

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-16
● 2-AP-17
● 2-AP-19

● 3A-CS-03
● 3A-DA-11
● 3A-DA-12
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-17
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–21–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 8: Prepare Lander Time Frame: 45-90 minutes

Learning Targets
● I can connect and adjust the object sensor.
● I can change the position of the 180 servo.
● I can use the object sensor to trigger an event.
● I can use the microswitch to trigger an event.
● I can use states and a state variable to control

the NeoPixel ring and 180 servo.

Key Concepts
● A variable that represents the state, or phase,

allows the program to remember information
about events.

● Different input peripherals can be used in the
same program to change the state and trigger
events.

Assessment Opportunities
● Check for Understanding in CodeSpace.
● Explain the steps or how the set_lighting()

function works.
● Exit ticket - Draw a diagram of the states of the

program.
● Submit / check the PrepareLander program.
● Journal entry on their learning experience.

Success Criteria
Connect an object sensor to the CodeX and
adjust it to the manufacturer specifications.
Use the object sensor to trigger an event.
Use the microswitch to trigger an event.
Use a variable for states to control the NeoPixel
ring and 180 servo.

Vocabulary
● Pull: A property that can be changed when setting up an input peripheral that determines the default

value of a pin when nothing is connected. The pull can be set to “up” to move a weak pull toward 3 volts.

New Python Code

Set all pixels in the NeoPixel ring to one color. This was first
used in Mission 4.

sensor = exp.digital_in(exp.PORT1,
pull=digitalio.Pull.UP)

Change the pull property to “up” so the weak signal is
pulled toward 3 volts, or “high”.

Real World Applications
The object sensor can be used for a variety of applications, including robotics autonomous cars, etc:

● Line or object detection
● Impact avoidance

Have students discuss where and how an object sensor might be used in common items, appliances, etc.

Extensions
● Use a CodeX button as an abort button.
● Display the current state on the display screen.
● Add a fourth state (before init) that requires

some crew action.
● Use the CodeX buttons as a check-in for each

crew member, indicating they are ready for
landing.

● Add an alert sound when landing.
● Use the CodeX buttons as communication

devices – a button press would indicate a
phase to mission control.

● Once landed, use the CodeX’s ambient light
sensor to adjust solar panels.

Cross-Curricular
● LANGUAGE ARTS: Have students compare

and contrast this mission to previous missions.
● SCIENCE: Several missions now have used the

finite-state machine model. There are many
applications of this in science as well, such as
the life cycle of something. Discuss how
science has finite states.

● SCIENCE: Have a lesson on how the object
sensor works.

–22–

Lift-Off with CodeX .

Mission 9: Automatic Gardner

Overview and Notes: A good garden needs watering

The crew will be unable to bring all the food necessary to survive on the surface of Mars. They will have to be able to
grow their own food once they get there. They will want this process to be automated as much as possible. We will
construct a system to sense soil moisture levels and then automatically water the garden.

Discussion or research questions: Where will the crew get the water and seeds? Will things grow on Mars like they
do on Earth?

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com, with their student accounts
● A CodeX, peripherals kit and cables (relay, water pump, soil moisture sensor, divider)
● A small screwdriver for relay connections
● Two containers, water and soil

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-DA-09
● 2-AP-10
● 2-AP-11
● 2-AP-13
● 2-AP-17
● 2-AP-19

● 3A-CS-03
● 3A-DA-11
● 3A-DA-12
● 3A-AP-13
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-17
● 3B-AP-21

–23–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 9: Automatic Gardner Time Frame: 30-60 minutes

Learning Targets
● I can connect the relay to the CodeX.
● I can connect the water pump to the relay and

CodeX.
● I can connect the soil moisture sensor to a

divider and then the CodeX.
● I can prime the water pump.
● I can use the soil moisture sensor to trigger an

event.

Key Concepts
● A relay is required to isolate circuits and use

the water pump.
● Like other analog sensors, the soil moisture

sensor can be used to control a peripheral.
● A button on the CodeX can be used to trigger

an event, like priming the pump.

Assessment Opportunities
● Check for Understanding in CodeSpace.
● Draw a diagram of the relay/water pump setup.
● Exit ticket - Explain the meaning of the values

the soil moisture sensor returns.
● Submit / check the AutomaticGarden program.
● Journal entry on their learning experience.

Success Criteria
Connect the water pump and turn it on and off.
Print the soil moisture reading to REPL.
Use the soil moisture sensor to control the
water pump.
Use a CodeX button to prime the pump.

Vocabulary
● NC / NO: Terminals on the relay used for connecting peripherals. NO = normally open; this terminal is the

most common one used.
● Priming: The process of removing air from pump lines.
● Conductivity: The ability of a material to conduct electricity. In this mission, it is water. More water in the

soil means more conductivity.

New Python Code

buttons.was_pressed(BTN_A) Returns True if the button was pressed since the last check; otherwise it
returns False.

relay.value The property of the peripheral used to turn on/off the relay (True or False)

Real World Applications
● The soil moisture sensor can be used in real-world applications, like farming and gardening.
● The relay is used in many real-world applications. Discuss with your students or have them research

where they can find relays in their everyday lives.

Extensions
● Add NeoPixels and LEDs to indicate the status

of the soil moisture. For example, “green” could
indicate optimal moisture, “yellow” that
watering is needed soon, and “red” for
immediate watering.

● Show the process of watering with a sequence
of LED lights to simulate the water flow.

● Use the LCD screen to display real-time soil
moisture levels.

● Have settings for different plants, and use a
CodeX button to determine which settings to
use.

Cross-Curricular
● LANGUAGE ARTS: Have students write a lab

report or technical paper about this mission.
● MATH: Experiment with different times for the

pump to turn on and measure the water output.
Create a graph with the data. As an algebra
extension, write the equation for the data.

● SCIENCE: Have a lesson on conductivity. Use
the soil moisture sensor in different substances.

● BIOLOGY: Have a lesson on plants and what
they need to grow. How much sunlight? How
much water? What are the alternatives?

–24–

Lift-Off with CodeX .

Mission 10: Exploring the Surface

Overview and Notes: A new journey begins

After landing on Mars, the crew has a new journey ahead. One of their tasks is to explore the surface. But if the
CodeX, representing the Rover, is damaged, the peripherals you have been using so far may not work. This project
will use the breadboard and electronic components to detect an object, calculate the distance to the object, and
develop a warning system for the Rover.

The project will require a breadboard connected to the CodeX for power. Then additional components will be added.
First the ultrasonic sensor to detect an object and return important data. Then use the data to calculate the distance
to the object and use LEDs as a warning system so the Rover can avoid harmful objects.

This project has many points of discussion and research: Warning systems, sonar detection, autonomous vehicles,
and much more. This technology is used in so many real-world applications.

Preparation and Materials:
Each student / pair needs:

● A computer / laptop with the Chrome web browser
● Login to http://make.firialabs.com with their student accounts
● A CodeX, peripherals kit and jumper wires (external peripherals: breadboard, 2 LEDs,

2 resistors, and the ultrasonic sensor)

Peripherals Used

Standards addressed in the mission:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-DA-08
● 2-DA-09
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-16
● 2-AP-17
● 2-AP-19

● 3A-CS-03
● 3A-DA-11
● 3A-DA-12
● 3A-AP-13
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-AP-21
● 3A-IC-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-AP-10
● 3B-AP-14
● 3B-AP-15
● 3B-AP-16
● 3B-AP-17
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–25–

http://make.firialabs.com

Lift-Off with CodeX .

Mission 10: Exploring the Surface Time Frame: 60-90 minutes

Learning Targets
● I can connect a breadboard to CodeX.
● I can connect external peripherals to the

breadboard.
● I can use sonar to detect an object.
● I can convert sensor time data to a distance in

centimeters.
● I can create a warning system for the Rover.

Key Concepts
● The types of components that can connect to

the CodeX are greatly expanded with a
breadboard.

● A sonar can detect an object and how far away
it is.

● Use a well-known formula for distance to
calculate the distance to an object.

● The CodeX timer can be used in several types
of applications.

Assessment Opportunities
● Check for Understanding in CodeSpace-(2).
● Write instructions, or draw a diagram, for

connecting a sensor on a breadboard.
● Explain how sonar works.
● Exit ticket - Write pseudocode for setting up an

alarm system using an if/elif/else statement.
● Submit / check the ExploreSurface program.
● Journal entry on their learning experience.

Success Criteria
Connect the breadboard to the CodeX
Use jumper wires for the sensor’s power,
ground and input/output.
Interpret data from the sonar sensor by
calculating the distance to an object.
Create two simple circuits using an LED and
resistor.
Create a warning system for the Rover based
on the distance to a harmful object.
Add a function to “power down” the Rover.

Vocabulary
● Breadboard: A plastic board with tiny holes for inserting electronic components to build a circuit.
● Sonar: Short for “sound navigation and ranging”; it is a method of detecting and locating objects by using

reflected sound waves.
● Ultrasonic Sensor: A peripheral that uses sonar to detect an object and the distance to the object.
● Terminal Strip: A column of tiny holes on a breadboard that are electrically connected together.
● Jumper Wires:Wires with connector pins at each end; used for connecting items on a breadboard.
● Resistors: Electronic components that limit the amount of current that passes through them. They are

used with other peripherals to keep them from being damaged.

New Python Code

import pulseio Import the pulse in/out library for the ultrasonic sensor’s echo pin to
receive a sound wave (pulse)

pulseio.PulseIn(exp.GPIO0) Used to set up an input peripheral that receives a pulse

trigger.value Set it True to turn on, and False to turn off, the sonar’s digital trigger

echo.clear() Clear the echo so it is ready to receive a newly transmitted signal

echo[0] The return value of the echo, which is the transmission and receiving
time in microseconds

return -1 Can be used to break a loop and return a value not typically given by a
peripheral. It would be used when the loop condition may not be met,
like timing out.

display.show(pics.HAPPY) Displays a pre-defined bitmap image on the CodeX LCD

–26–

Lift-Off with CodeX .

Real World Applications
Ultrasonic sensors are used in many real-world applications. Have students research smart objects that have
ultrasonic sensors as embedded technology.

● The sensors are used in cars to support drivers with their driving tasks, like parking and nearby obstacle
detection.

● Sonar is used in ships and other water transports to measure depth or detect objects on the sea bed.
● Other applications include: anti-collision detection, people detection, box sorting, bottle counting on drink

filling machines, and much more.
Warning systems are very common in real-world applications. Have students discuss warning systems in their
everyday lives. What data do they use for the warning?

● Examples include: warning systems in cars; low-battery warning; home alarm systems; etc.

Extensions
● Add more features to the “power down”

function, like a beep or song.
● Use additional CodeX features to enhance the

warning system, such as the NeoPixels.
● Add other sensors to the CodeX, like the

temperature sensor or sound sensor. Add their
data to the warning system (too hot, too cold,
explosion, etc.)

● Add the 360 servo to the CodeX to simulate
the wheels. Have the servo go full speed when
no object is detected, but slower speeds for
the warning and alert. As an additional
challenge, program a sequence of backing up
and going in a different direction when alerted.

● Once landed, use the CodeX’s ambient light
sensor to adjust solar panels.

Cross-Curricular
● LANGUAGE ARTS: Have students write a short

story about a Rover or autonomous robot.
● MATH: Use the formula D=RxT to make

predictions. Select a distance and predict the
time for a signal to get there and back. Then
use the sonar sensor to check your predictions.

● MATH: Use the project as a way to introduce
D=RxT. Then use the formula for different rates,
like the speed of a car or train. Compare the
results and make a graph.

● PHYSICS: Study the science of the ultrasonic
sensor and sonar.

● SCIENCE:What is the speed of sound in
different mediums, like water, an electric circuit,
through a pillow, etc.

● SCIENCE: Think about breaking distances and
friction. At what distance must the Rover start to
break in order to avoid a collision? Then select
an alert distance that will keep the Rover safe
based on your calculations.

● BIOLOGY: Explore how bats, and other animals,
use sonar for navigation.

● SOCIAL STUDIES: Research when sonar was
invented and all the ways people have used it.
What did people use for navigation before
sonar?

–27–

Lift-Off with CodeX .

Appendix A: Required Resources

Computer Resources

Each student will need:

● A computer with the Chrome web browser.
● Chromebooks work great – just make sure they are up to date.
● Windows 10 or Windows 11 will work with no additional drivers needed.
● A current Mac OS will also work with no additional drivers needed.
● A USB port is used to connect and program the CodeX. The CodeX comes with a USB to USB-C cable. If

your laptop or computer has any other configuration, you will need a cable that has USB-C on one end.

Software Resources

● The interactive textbook and text editor is web-based. Make sure the website is not blocked.
● An email is required for signing in and saving work. It can be a gmail account, but any email will work.
● A per device license is needed to access the curriculum.

Physical Resources

The missions can be completed by individual students or student pairs utilizing pair programming. It is possible to
share a kit with more than one student or student pair, but that is not recommended. Each student or student pair will
still need a CodeX and license for the curriculum.

● The Lift-Off! Kit comes with all the peripherals needed for the projects.
● The Kit comes with all the cables needed for the projects.
● Each Kit needs a CodeX
● Materials needed but not included:

○ A phillips screwdriver (Mission 8)
○ A ruler that measures millimeters (Mission 8)
○ A small screwdriver (Mission 9)
○ Two large plastic cups (Mission 9)
○ Water and soil (Mission 9)
○ (optional) 4 AA batteries for the CodeX

Notes

● When the CodeX is plugged into a computer, it will appear as a USB mass storage device, similar to a flash
drive. This is not required for normal classroom use. So don’t worry if your school has a policy preventing
flash drives. You just close the pop-up window and continue.

● Occasionally Firia Labs will provide a software update that requires updating the core software on the
CodeX. At those times you will need the flash drive feature to update the software, so you will need to use a
computer with USB drive access. Often a teacher’s computer is used to update all the CodeX.

–28–

Lift-Off with CodeX .

Appendix B: Our Approach

Physical Computing and CodeSpace: a web-based professional-learning platform

Hardware brings code to life! Our versatile physical computing devices and peripherals get students excited
about code. Our CodeSpace learning environment enables them to step up to computer science with
real-world text-based Python coding. We include ready-to-teach standards-aligned curriculum with hands-on
projects that motivate students.

While there are some great online coding educational programs, we think our approach helps reach a
broader range of students. Our approach:

● Gets students focused “off-screen,” programming with physical hardware that connects and interacts
independently of their computers.

● Teaches a real, professional programming language. Even younger students appreciate that you can
make real money with these exact skills. If they can read, and they can type, they can code in
text-based Python.

● Gives students the tools to create anything they can imagine. Beyond projects and curriculum, we
give students a full-fledged software development environment. These are professional-strength
tools for writing code. Instead of a game-playing environment, students can “win with code” through
engaging hands-on projects and their own creativity.

Project Based Motivation

Students may wonder why they are learning to code. We all find that knowledge tastes so much better when
you’re hungry for it! Our goal is to motivate students with tangible, challenging and practical projects…that
just so happen to require coding to build. We want students to think about how they might code a given
project using what they already know. Only then do we teach just enough coding concepts to help them get
the job done. This approach gives reason and meaning to each concept, as well as relevant problem
context, which helps them retain it.

Type it In

Students are often tempted to just copy and paste from lesson examples. Prior to our extensive testing of the
curriculum on groups of 4th through 12th grade students, we were concerned that the typing burden might
be a problem. But we were willing to risk it.

● Typing in the code forces focus, dramatically improving retention.
● Keyboarding proficiency is key to expressiveness in using a programming language.
● Mistakes in structure, grammar, punctuation, capitalization, etc. are priceless learning opportunities.

Students learn an incredible amount from their mistakes. Our goal is to provide awesome safety-nets for
them, guiding them to iterate quickly through successive failed attempts to arrive at a working solution.
Extensive classroom observation has convinced us that the typing burden is not a problem. Students dive
right in, and they don’t have to be speed typists to make great progress in coding.

Exploration and Creativity

One of the great things about coding is the expressiveness it affords. Coding is a craft that takes time to
master, but with only a few basic tools you can start crafting some pretty amazing things! Before they even
complete the first project, some of your students will probably be experimenting “off-script” with some ideas
of their own. That’s a good thing! In every lesson we list some ideas for re-mixing each project’s concepts.
Remember that students are learning programming skills they can use to build any application – from
controlling a rocketship to choreographing dance moves. Nurture creativity, explore, and instill the joy of
coding!

–29–

Lift-Off with CodeX .

Appendix C: Teacher Resources

If you and your students are still fairly new to text-based coding, don’t worry! Like other physical devices and their
curriculum, we’ve designed the Lift-Off! With CodeX Kit and this curriculum guide to gently guide you from absolute
beginner to a very comfortable level of proficiency. Remember this – Don’t Panic🙂

We understand that tackling a subject like Computer Coding can be pretty intimidating. Fear not, we’ve built some
amazing tools to help you! As you begin this journey, know that the team at Firia Labs is here to help, too. If you run
into any problems, just let us know and we’ll get you back on track.

Classroom Preparation

Writing code can be like literary writing. Like developing writing skills requires individual practice, learning to
code requires students to compose and test their work individually. They need to make their own mistakes
and struggle through correcting them.

There is also a place for pair programming and collaboration in the coding classroom. Such practices foster
knowledge sharing, collective code ownership and code review “on the go”. It also gives students a chance
to communicate about what they are learning and reflect on their practices. It builds confidence and keeps
students focused on the taks. Pair programming can result in better quality work with less errors, and keeps
teams “in the flow”.

You may need to think about a balance between independent work and pair programming to give your
students the best opportunities to succeed and truly engage in and enjoy programming.

Daily Routine

We recommend students work for at least 30 minutes each programming session. Adjust accordingly to your
day. Because of the time it takes to set up equipment, log in to computers, and then collect equipment at the
end of the learning period, it may take more time than you anticipate. Each lesson has a suggested time
frame. This range accounts for completing the basics to continuing with cross-curricular lessons or
extensions. Some missions may go even longer, depending on the time you have to spend in coding, the
length of time for each mission, the abilities of your students, etc.

This mission pack has a lot of flexibility built-in. You should complete each mission in order, but the amount of
time spent on each mission is up to you. A pacing calendar isn’t provided, given the flexibility and options for
the mission pack.

We recommend that students complete the Python with CodeX mission pack in advance, but it is not
required.For pacing considerations, the mission pack can be:

● A once-a-week activity for an elective class or after school club
● A drop-in unit in a required or elective course
● Extended to a 9-week or 18-week course

Remixing and Extensions

Naturally students will progress at different speeds. The material is set up for independent study. You can
allow students to work ahead at their own pace, or slow down as needed.

As an alternative, you can keep the class together and have “high flyers” work on extensions to the missions.
Several suggestions are given for each mission. This gives students a chance to review their learning and
add to their program in ways that interest them. Many students will want to experiment with what they’ve
learned, and we offer suggestions along the way to spur this creative tinkering. Remixes are also an
excellent opportunity for students to synthesize their learning and create their own projects. We highly
recommend including extensions and/or remixes into your pacing calendar.

–30–

Lift-Off with CodeX .

Managing a Class

Our CodeSpace learning platform makes it easy for you to create a class for your students to join, and
enables you to monitor their progress.

For help and step-by-step instructions, visit: https://learn.firialabs.com/curricula/code-space

If you need assistance for anything, please send an email to: support@firialabs.com

Here are the basics of the CodeSpace Teacher Dashboard

● Log in to CodeSpace and from HELP, select CLASS DASHBOARD
● Once you are in the dashboard, click + in the green bar, top right corner, to add a class.
● Assign each class a name, and allow members to join with a join code.
● You can assign Google Classroom as your LMS.
● After the class is created, you can edit the class, get a join code, disable joining, etc.
● You can delete a student using the “remove” function.
● Students go to CodeSpace and click the SELECT CLASS button.
● They can click the JOIN CLASS button and enter their join code for your class.
● The class will be activated and they are ready to start working!
● In the dashboard, you can see student progress, as a whole class and individually.

Class dashboard

Individual progress

–31–

https://learn.firialabs.com/curricula/code-space
mailto:support@firialabs.com

Lift-Off with CodeX .

Appendix D: Vocabulary by Mission

Mission 1 – Welcome to Lift-Off! Peripherals

Peripheral A device that interacts with the CPU (common peripherals are LED lights, display screen, buttons,
mouse, keyboard, and printer)

Function A named chunk of code you can run anytime just by calling its name; also called a procedure

Parameter A local variable in a function that receives a value passed into the function when it is called;
information the function needs to complete its task

Argument Passing data to functions (information a function uses to complete its task)

Variable A name you assign to some data used in code instead of the literal, or actual, values

Constant A name for a value that doesn’t change during program execution

Mission 2 – Lift Off

Abstraction The process of taking away or removing characteristics from something in order to reduce it to a
set of essential characteristics

Algorithm A sequence of steps for completing a task (step by step process)

Branching Decision points in code; a condition

Mission 3 – Conserve Energy

Analog A peripheral with a range of integer values – from 0 (off) to 2^16 - 1 (full power)

Digital A binary peripheral with two states – True or False

ADC Analog to digital converter – converts an analog measurement to a finite digital value. For CodeX,
which is a 16-bit microcontroller, the digital values range from 0 to 2^16-1 (65,535)

Pulse-Width
Modulation

Analog measurement where on/off pulses are sent at a constant rate, determined by the duty
cycle and frequency (or analog period)

Mission 4 – Hatch Lock

RGB Red, Green, Blue; the colors that make up a single pixel on the screen

Pixel Picture element; tiny dots used to compose images and text on a digital screen

Tuple An immutable sequence of items that you can access with an index, or a list with values that don’t
change. A read-only version of a list.

Index A common method for referencing the elements in a list, tuple or string using a number

Mission 5 - Alert System

Duty Cycle The percentage of time power is ON during pulse-width modulation.

Frequency The analog period, or how rapidly the device pulses during pulse-width modulation.

REPL “Read, evaluate, print loop” command line that enables print statement output.

–32–

Lift-Off with CodeX .

Simulation Code that builds a model of something; lets you play with that model to explore "virtual" situations.

Threshold A specific limit or point that must be met or exceeded in order for something to occur.

Mission 6 - Life Support

Servo A DC motor with a controller circuit, internal feedback mechanism and gearbox. The 360
continuous servo goes in both directions at different speeds. The 180 positional servo turns in
either direction to a specific angle and holds that position.

Finite-State
Machine

The status of a system with transitions. With this system, your program can only be in one of a
known set of “states” at any given time. Usually “state” is based on variables in your code.

State A phase of a program. Keeping track of states helps you understand and manage your code. Each
state might have its own set of conditions it is tracking.

Transition Moving between states; the program transitions from one state to another when certain conditions
are met.

Mission 7 – Solar Tracking

Photoresistor A sensor that changes its resistance when light shines on it. A high intensity of light causes less
resistance, and less light causes more resistance.

Bouncing When a digital input registers multiple times instead of once, like a button press.

Mission 8 – Prepare Lander

Pull A property that can be changed when setting up an input peripheral that determines the default
value of a pin when nothing is connected. The pull can be set to “up” to move a weak pull toward
3 volts.

Mission 9 – Automatic Gardner

NC / NO Terminals on the relay used for connecting peripherals. NO = normally open; this terminal is the
most common one used.

Priming The process of removing air from pump lines.

Conductivity The ability of a material to conduct electricity. In this mission, it is water. More water in the soil
means more conductivity.

Mission 10 – Exploring the Surface

Breadboard A plastic board with tiny holes for inserting electronic components to build a circuit.

Sonar Short for “sound navigation and ranging”; it is a method of detecting and locating objects by using
reflected sound waves.

Ultrasonic Sensor A peripheral that uses sonar to detect an object and the distance to the object.

Terminal Strip A column of tiny holes on a breadboard that are electrically connected together.

Jumper Wires Wires with connector pins at each end; used for connecting items on a breadboard.

Resistors Electronic components that limit the amount of current that passes through them. They are used
with other peripherals to keep them from being damaged.

–33–

Lift-Off with CodeX .

Appendix E: Python Code by Mission

Mission 1 – Welcome to Lift-Off! Peripherals

exp.digital_out(exp.PORT0) Used to set up a digital output peripheral (LED)

led.value The property of the LED peripheral used to turn on/off the light

Mission 2 – Lift Off

exp.digital_in(exp.PORT0) Used to set up a digital input peripheral (button, switch)

button.value Returns the button’s position: True (not pressed) or False (pressed)

switch.value Returns the switch’s position: True (out) or False (in)

display.fill() Fills the CodeX LCD screen with a pre-defined or RGB color

Mission 3 – Conserve Energy

exp.pwm_out(exp.PORT0) Used to set up a peripheral with PWM; requires a duty cycle and
frequency

exp.analog_in(exp.PORT1) Used to set up an analog input peripheral (potentiometer)

led.duty_cycle Determines power to the LED (higher integer is a brighter light)

sleep_ms() Delays program execution in milliseconds

time.ticks() Returns the current clock time (elapsed time since last reboot)

motion_sensor.value Returns the motion sensor value: True (detected) or False (not
detected)

potentiometer.value Returns an integer as the potentiometer knob’s position

Mission 4 – Hatch Lock

neopixel.NeoPixel(exp.PORT0, 8) Sets up the NeoPixel ring; indicates the port and number of LEDs

power.enable_periph_vcc(True) Turns on extra power to the NeoPixel ring

randint(low, high) Returns a random integer between and including low and high

(red, green, blue) A tuple with three items; used for RGB colors

np[pixel] Accessing a single item [pixel] in a list np

return Returns a value to the statement calling the function

Mission 5 - Alert System

LED_ON = 2**16 // 2 Maximum duty-cycle for an LED using PWM

LED_OFF = 0 Minimum duty_cycle for an LED using PWM

–34–

Lift-Off with CodeX .

led = exp.pwm_out(exp.PORT0,
frequency=2)

LED using PWM for blinking light

degrees_c = raw_temp*0.004577 - 50 Conversion of raw temp to degrees Celsius

avg_sound = avg*(1-WEIGHT) +
new_val*WEIGHT

Average sound calculation using exponential moving average

import soundlib Import the sound library to add non-blocking sound functions

siren =
soundmaker.get_tone(“violin”)

Sets up a variable for the sound

siren.set_pitch() Sets the pitch tone at the given frequency

siren.play() Plays the sound at the set pitch

siren.glide() A non-blocking way to ramp the pitch from the current setting to a
new setting over a specified amount of time

siren.stop() Stops playing the tone

global temp_limit Allows for updating a global while being used in a function.

print(“Temp:”, degree_c) The print() function displays text on the console panel

Mission 6 - Life Support

servo = exp.pwm_out(exp.PORT0,
frequency=20)

Set up a 360 servo using PWM

//
example: CYCLE * percent//100

Division that returns only the integer and no decimal (no rounding)

Nested if statements. The first if statement is checked. If true, it will
check the second if statement. If false, the block of code is skipped.

This example also shows transitioning to a different state.

Mission 7 – Solar Tracking

servo.duty_cycle = 0 Stop a 180 servo

state = ‘morning’ Define and initialize a variable for the state.
Also, single quotes can be used for strings (see hint in Objective 4).

Mission 8 – Prepare Lander

Set all pixels in the NeoPixel ring to one color. This was first used in
Mission 4.

sensor = exp.digital_in(exp.PORT1,
pull=digitalio.Pull.UP)

Change the pull property to “up” so the weak signal is pulled toward 3
volts, or “high”.

–35–

Lift-Off with CodeX .

Mission 9 – Automatic Gardner

buttons.was_pressed(BTN_A) Returns True if the button was pressed since the last check; otherwise
it returns False

relay.value The property used to turn on/off the relay (True or False)

Mission 10 – Exploring the Surface

import pulseio Import the pulse in/out library for the ultrasonic sensor’s echo pin to
receive a sound wave (pulse)

pulseio.PulseIn(exp.GPIO0) Used to set up an input peripheral that receives a pulse

trigger.value Set it True to turn on, and False to turn off, the sonar’s digital trigger

echo.clear() Clear the echo so it is ready to receive a newly transmitted signal

echo[0] The return value of the echo, which is the transmission and receiving
time in microseconds

return -1 Can be used to break a loop and return a value not typically given by
a peripheral. It would be used when the loop condition may not be
met, like timing out.

display.show(pics.HAPPY) Displays a pre-defined bitmap image on the CodeX LCD

–36–

